Time: Two hours

FM: 100

SAMPLE QUESTION : MATHEMATICS

Answer all questions. No extra sheets of paper would be supplied.

Group A

Each question below is followed by four possible answers of which exactly one is correct. Write [a] or [b] or [c] or [d] as your
answer against the corresponding question number. Use only the first page of your answer book for this purpose. Each
correct answer would be awarded 3 marks; 1 mark would be awarded for no attempt, and a wrong answer would fetch no
credit .

				credit							
						সংখ্যার পাশে [a] অথবা [b] অ					
সা	ব লেখ।	উত্তরপুস্তিকার কেবলমাত্র প্রথম	পাতা			ধরের জন্য 3 নম্বর, উত্তর না দে	ব ওয়ার	জন্য 1 নম্ব, ভুল উত্রেরে জন্য			
				কোন নয়র	নেহ।						
1.	The number of elements belonging to the three sets A, B, C are m, n, p respectively. The total number of elements belonging to exactly two sets is k ; and the number of elements common to all three is r . Then the total number of elements belonging to at least one of the three sets is										
	A,B,C তিনটি সেটে যথাক্রমে m,n এবং p টি উপাদান আছে। কেবলমাত্র দুটি সেটের সাধারণ উপাদানের মোট সংখ্যা $k,$ তিনটি সেটেই আছে এমন উপাদানের সংখ্যা $r,$ অন্ততঃ একটি সেটে আছে এমন উপাদানের সংখ্যা r										
	[a]	m+n+p-k-2r	[b]	m+n+p-3k+r	[c]	m+n+p-k+3r	[d]	m+n+p-3k-r.			
2.	If for given real numbers x and y , it is given that $\sin x = \sin(x+y) (\neq 0)$, then which of the following is always false for any choice of x and y ?										
	প্রদত্ত ব	ান্তব সংখ্যা x,y এর জন্য দেং	3য়া আ	$\Re \sin x = \sin(x+y) (\neq 0)$)), ত	ব নীচের কোনটি সকল x,y এ	ার জন্য	াই অসত্য?			
	[a]	$\sin y = 0$	[b]	$\cos y = 1$	[c]	$\sin y = \sin 2x$	[d]	none of these.			
3.	If A is a skew-symmetric matrix of order 3, and P is a 3×1 matrix, then P^TAP will be										
	A এক	টি 3 ক্রমের বিপ্রতিসম ম্যাট্রিক্স	এবং 1	$^{ extsf{P}}$ একটি $3 imes 1$ ম্যাট্রিক্স হলে I	P^TAF)					
	[a]	null matrix	[b]	a non-null symmetric matrix	[c]	a non-null skew- symmetric matrix	[d]	none of these.			
4.	If $\int_0^x f(t)dt = x + \int_x^1 t f(t)dt$, then $f(1)$ is equal to যদি $\int_0^x f(t)dt = x + \int_x^1 t f(t)dt$ হয়, তবে $f(1)$ এর মান										
	[a]	0	[b]	1	[c]	2	[d]	none of these.			
5.	$f:D_1\to\mathbb{R},g:D_2\to\mathbb{R}$ are any two functions, where \mathbb{R} is the set of reals. Then the domain of $\frac{f}{g}$ will always be										
	f:D	$g:D_2 o\mathbb{R}$, $g:D_2 o\mathbb{R}$ দুটি $^{ au}$	অপেক্ষৰ	চ, যেখানে ℝ বাস্তব সংখ্যার সে	াট। তা	হলে $rac{f}{g}$ -এর অঙ্গল সর্বদা হবে					
	[a]	a proper subset of $D_1 \cup D_2$	[b]	a proper subset of $D_1 \cap D_2$	[c]	a subset of $D_1 \cap D_2$	[d]	one of D_1 , D_2 , $D_1 \cap D_2$ and $D_1 \cup D_2$.			
6.	If x, y and k are positive numbers such that $\frac{10x}{x+y} + \frac{20y}{x+y} = k$ and if $x < y$, then a possible value of k can be										
	যদি x,y এবং k এরূপ ধনাত্মক সংখ্যা হয় যে $rac{10x}{x+y}+rac{20y}{x+y}=k$, এবং যদি $x < y$ হয়, তবে k -এর একটি সম্ভাব্য মান হতে পারে										
	[a]			12	[c]		[d]	18.			
7.	The number of solutions of the equation $ x+2 + x+3 + x-4 = 6$ is										
	(x+2 + x+3 + x-4 =6 সমীকরণটির সমাধানের সংখ্যা)										
	**	exactly one (একটিমাত্র)	[b]	,	[c]	infinitely many (অসংখ্য)	[d]	zero (*Į·Ū)			

কিন্তু সসীম)

8. If $\log_{30} 3 = a$ and $\log_{30} 5 = b$, then the value of $\log_{30} 8$ is $\left(\log_{30} 3 = a \text{ এবং } \log_{30} 5 = b \text{ হল, } \log_{30} 8 \text{ এর মান}\right)$ [a] 3(a+b-1) [b] 3(a+b-3) [c] 3(a-b-1) [d] 3(1-a-b).

9.	The centre of a circle of radius r is at O , C is a point at a distance $a(>r)$ from O . The tangents from C to the circle touch it at A and B . The area of triangle ABC is									
	(r ব্যাসার্ধের একটি বৃভের কেন্দ্র C ABC ত্রিভুজের ক্ষেত্রফল হল $)$	C বিন্দুটি (O থেকে $a(>r)$ দূর	ত্বে আছে।	C থেকে এই বৃত্তের শ্পর্শক	গুলি A ও	B বিন্দুতে ব্ওটিকে শ্পর্শ করে।			
	[a] $\sqrt{a^2-r^2}\cdot\frac{r^3}{a^2}$	[b] (a^2)	$(r^2 - r^2) \cdot \frac{r^2}{a^2}$	[c]	$(a^2 - r^2)^{\frac{3}{2}} \cdot \frac{r}{a^2}$	[d]	none of these.			
10.	The term independent of x									
	[a] 234	[b] 362				$\begin{bmatrix} x^2 \end{bmatrix}$				
11	If $x[x] = 39$ and $y[y] = 68$,									
11.	[a] 14	[b] 15	[a] + [g] is	[c]			none of these.			
			c1.5							
12.	2. If $x^2f(x)+f(\frac{1}{x})=0$ $(x>0)$ then the value of $\int_{0.\dot{6}}^{1.5}f(x)dx$ is $($ যদি $x^2f(x)+f(\frac{1}{x})=0$ $(x>0)$ হয়, তবে $\int_{0.\dot{6}}^{1.5}f(x)dx$ এর মান $)$									
	[a] -1	[b] 0		[c]	1	[d]	none of these.			
10	TIL 1 C 1	1	, 1		1 .					
13.	The value of $\frac{1}{\sin A \sin 2A}$ +	$\sin 2A \sin 3$	$\frac{1}{3A} + \frac{1}{\sin 3A \sin 4}$	\overline{A} + +	$\frac{\sin nA\sin(n+1)A}{\sin nA\sin(n+1)A}$	5				
	[a] $\cot A - \cot(n+1)A$ [l	o] $\csc A(\cot A)$	ot $A - \cot(n+1)$	A) [c] c	$\operatorname{osec} A(\cot A + \cot(n$	+1)A)	[d] $\cot(n+1)A - \cot A$.			
14.	Let x and y be real number	rs such that	$\sin x + \sin y = a$	a , $\cos x +$	$\cos y = b$. Then the	value of	$\sin(x+y)$ is			
	(মনে কর x এবং y -এর বাস্তব মা									
	$[a] \frac{ab}{a^2 + b^2}$	[b] $\frac{b^2}{a^2}$	$\frac{-a^2}{+b^2}$	[c]	$\frac{2ab}{a^2 + b^2}$	[d]	$\frac{a^2 - b^2}{a^2 + b^2}.$			
15.	. If a and b are integers with $ a $, $ b \le 5$ then the probability of $\begin{vmatrix} a & -b \\ b & a \end{vmatrix}$ being a perfect square is									
	(a,b দুটি পূর্ণসংখ্যা যেখানে $ a , b $	$ b \leq 5$. তাহল	ন $\left egin{array}{cc} a & -b \ b & a \end{array} ight $ পূৰ্ণবৰ্গ হ	বার সভাবন	হল)					
	[a] $\frac{19}{121}$	[b] $\frac{22}{121}$	<u>-</u> -	[c]	$\frac{30}{121}$	[d]	none of these.			
16.	The circum-centre of the triangle whose sides are $\sqrt{31}$, $3\sqrt{2}$ and 7 units lies									
	(যে ত্রিভুজের বাহুগুলির দৈর্ঘ্য $\sqrt{3}$	$\overline{1},3\sqrt{2}$ এবং	7 একক তার পরিকে	ন্দ্ৰ)						
	[a] outside the triangle		ictly within thangle	he [c]	on the triangle	[d]	equidistant from two sides of the triangle.			
17.	. Which of the following four statements is not true ? (নীচের মন্তব্যগুলির মধ্যে কোনটি সত্য নয়?)									
	Two sets A and B are equal A				B সমান যদি এবং কেবল					
	[a] $A\triangle P = B\triangle P$, fo some set P		$\triangle P = B \triangle P$, for the set P	or [c]	$(A\triangle B)\triangle C$ = $(B\triangle C)\triangle A$, for each set C	[d] or	$A \cap P = B \cap P$, for all infinite sets P .			
18.	The largest area of a rectar $y = e^{-x}$ is	ngle which h	as one side along	g x-axis, c	one vertex on y axis a	and anot	her vertex is on the curve			
	যে চতুর্ভুজের একটি বাহু x -অক্ষের উপর, একটি কৌনিক বিন্দু y -অক্ষের উপর এবং অন্য একটি কৌনিক বিন্দু $y=e^{-x}$ বক্ররেখার উপর, তার সর্বাধিক ক্ষেত্রফল হল									
	[a] $\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}$	[b] $\frac{1}{2}e$	-2	[c]	$\sqrt{2}e^{-1}$	[d]	e^{-1}			
19.	. The curves having $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^3 = 0$ as its differential equation are									
	যে বক্ররেখাসমূহেরর অবকল সমীক	রণ $\frac{d^2y}{dx^2} + (\frac{dy}{dx})$	$(\frac{y}{x})^3 = 0$ সেগুলি							
	[a] ellipses উপবৃত্ত	[b] hy	perbolas পরাব্ড	[c]	parabolas অধিবৃত্ত	[d]	circles বৃত্ত			
20.	The number of reflexive relative of n সংখ্যক পদ বিশিষ্ট সেটেং		_	elements	is					
	[a] $2^{n^2} - 2^n$	[b] 2^{n^2}		[c]	2^{n^2}	[d]	2^n			

Group B

Each question carries 5 marks প্রত্যেক প্রশ্নের জন্য 5 নম্বর

21. (a) A square matrix A is called *idempotent* if $A^2 = A$. If A is a 2×2 idempotent matrix and $(A - A^T)^2 = O$, then show that AA^T is idempotent.

একটি বর্গ ম্যাট্রিক্সকে আইডেমপোটেন্ট বলা হয়, যদি $A^2=A$ হয়। যদি A একটি 2×2 আইডেমপোটেন্ট ম্যাট্রিক্স হয় এবং $(A-A^T)^2=O$ হয়, তাহলে দেখাও যে AA^T একটি আইডেমপোটেন্ট ম্যাট্রিক্স।

- (b) For two square matrices A and B, show that $(BA)^2$ is idempotent if AB is so.

 पৃটি বৰ্গ ম্যাটিক্স $A \, \otimes \, B$ -এর জন্য দেখাও যে $(BA)^2$ একটি আইডেমপোটেন্ট ম্যাটিক্স হবে, যদি AB-ও তাই হয়।
- 22. Let $f(x)=2\sin x,\ x\in[0,2\pi]$. Sketch the graphs of y=|f(x)| and y=[f(x)]. Find $\int_0^\pi [f(x)]dx$. ধরা যাক, $f(x)=2\sin x,\ x\in[0,2\pi]$ y=|f(x)| এবং y=[f(x)]-এর খসড়া চিত্র অংকন কর $\int_0^\pi [f(x)]dx$ বের কর $\int_0^\pi [f(x)]dx$
- 23. The sum of the length of the hypotenuse and another side of a variable right-angled triangle is constant. Show that the area of the triangle will be maximum or minimum when the angle between the hypotenuse and that side is $\frac{\pi}{3}$. Also verify whether the value is maximum or minimum.

 3+2
 একটি পরিবর্তনশীল সমকোণী ত্রিভুজের অতিভূজ ও অপর একটি বাহুর দৈর্ঘ্যের যোগফল ধ্রুবক। প্রমান কর যে অতিভূজ ও ঐ বাহুটির মধ্যেকার কোণ $\frac{\pi}{3}$ হলে ত্রিভুজটির ক্ষেত্রফল সর্বাধিক বা সর্বনিয় হবে। ক্ষেত্রফলটি সর্বাধিক নাকি সর্বনিয় তা যাচাই কর।
- 24. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x^2) = (f(x))^2$ and f(x+1) = f(x) + 1, for each x. Prove f is an odd function; and f(n) = n for any integer n.

ধরা যাক $f:\mathbb{R} \to \mathbb{R}$ এমন যে প্রতিটি x-এর জন্য $f(x^2)=(f(x))^2$ এবং f(x+1)=f(x)+1. প্রমান কর f একটি অযুগ্ম অপেক্ষক এবং সমস্ত পূর্ণসংখ্যা n-এর জন্য f(n)=n.

25. Show that the coefficient of x^{99} in $(x-1)(x-a)(x-a^2)\dots(x-a^{99})$ where $a=1+\omega$, ω is an imaginary cube root of unity is $\pm\sqrt{3}i$.

যদি $a=1+\omega$ হয়, তাহলে দেখাও যে $(x-1)(x-a)(x-a^2)\dots(x-a^{99})$ এর বিস্তৃতিতে x^{99} এর সহগ $\pm\sqrt{3}i$, যেখানে ω একের একটি কাল্পনিক ঘনমূল।

- 26. If $\int_1^2 e^{x^2} \ dx = a$ then find the value of $\int_e^{e^2} \sqrt{\ln x} \ dx$. যদি $\int_1^2 e^{x^2} \ dx = a$ হয় তাহলে $\int_e^{e^2} \sqrt{\ln x} \ dx$ এর মান নির্ণয় কর।
- 27. Three numbers are chosen at random from $1, 2, \dots, 2n$ with n > 1. Show that the probability that the numbers are in A.P. is $\frac{3}{4n-2}$.

 $1,2,\cdots,2n$ সংখ্যাগুলি থেকে তিনটি সংখ্যা যথেচ্ছভাবে নির্বাচিত করা হল, যেখানে n>1. দেখাও যে, সংখ্যাগুলি সমান্তর প্রগতিতে থাকার সম্ভাবনা হল $rac{3}{4n-2}$.

28. Use the principle of mathematical induction to prove that any postage (in whole rupees) of amount more than Rs 17 can be done by using Rs 4 and Rs 7 stamps only.

গাণিতিক আরোহ পদ্ধতি ব্যবহার করে প্রমাণ কর 17 টাকার অধিক মূল্যের যেকোনো পোস্টেজ (পূর্ণ টাকায়) শুধুমাত্র 4 টাকা এবং 7 টাকার স্ট্যাম্প ব্যবহার করেই করা যেতে পারে।